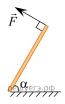

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида (1.4 ± 0.2) Н записывайте следующим образом: 1.40.2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

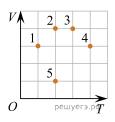
- 1. Если предмет находится перед плоским зеркалом на расстоянии 14 см от него, то расстояние между предметом и его изображением в зеркале равно:
 - 1) 56 см
- 2) 28 см
- 3) 21 cm
- 4) 14 cm
- 5) 7 cm
- 2. Установите соответствие между физическими величинами и учёными-физиками, в честь которых названы единицы этих величин.


А. Индуктивность	1) Генри	
Б. Работа	2) Джоуль	
	3) Герц	

- 1) A1 52 B3
- 2) A1 53 B2
- 3) A2 51 B3
- 4) A2 53 B1
- 5) A3 F2 B3
- 3. Поезд, двигаясь равноускоренно по прямолинейному участку железной дороги, за промежуток времени $\Delta t = 20$ с прошёл путь s = 340 м. Если в конце пути модуль скорости поезда v = 19 м/c, то модуль скорости v_0 в начале пути был равен:
 - 1) 10 m/c
- 2) 12 m/c
- 3) 13 m/c
- 4) 15 m/c
- 5) 16 m/c
- **4.** На рисунке приведен график зависимости пути *s*, пройденного телом при равноускоренном прямолинейном движении от времени t. Если от момента начала до отсчёта времени тело прошло путь s = 12 м, то модуль перемещения Δr , за которое тело при этом совершило, равен:

- 1) 12 m
- 4) 3 M
- 5) 0 M

- **5.** Цепь массой m = 4.0 кг и длиной l = 1.80 м. лежашую на гладком горизонтальном столе. берут за один конец и медленно поднимают вверх на высоту, при которой нижний конец цепи находится от стола на расстоянии, равном ее длине. Минимальная работа A_{min} по подъему цепи
 - 1) 36,0 Дж
- 2) 72,0 Дж
- 3) 108 Лж
- 4) 124 Дж
- 5) 144 Дж
- **6.** Рабочий удерживает за один конец однородную доску массой $m=14~{\rm kr}$ так, что она упирается другим концом в землю и образует угол $\alpha = 60^{\circ}$ с горизонтом (см. рис.). Если сила \vec{F} , с которой рабочий действует на доску, перпендикулярна доске, то модуль этой силы равен:

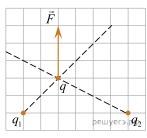

1) 35 H 2) 61 H

3) 70 H

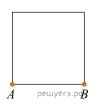
4) 121 H

5) 140 H.

- 7. Если абсолютная температура тела T = 320 K, то его температура t по шкале Цельсия равна:
 - 1) 7 °C
 - 2) 17 °C
- 3) 27 °C
- 4) 37 °C
- **8.** На V-T диаграмме изображены различные состояния некоторого вещества. Состояние с наибольшей средней кинетической энергией молекул обозначено цифрой:

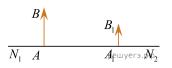


- 1) 1
- 5)5
- 9. С идеальным газом, количество вещества которого постоянно, проводят изотермический процесс. Если объём газа увеличивается, то:
 - 1) к газу подводят теплоту, давление газа увеличивается
 - 2) к газу подводят теплоту, давление газа уменьшается
 - 3) теплота не подводится к газу и не отводится от него, давление газа увеличивается
 - 4) теплота не подводится к газу и не отводится от него, давление газа уменьшается
 - 5) теплота отводится от газа, давление газа уменьшается


10. Сосуд, плотно закрытый подвижным поршнем, заполнен воздухом. В результате изотермического расширения объём воздуха в сосуде увеличился в два раза. Если относительная влажность воздуха в конечном состоянии $\phi_2 = 40\%$, то в начальном состоянии относительная влажность ϕ_1 воздуха была равна:

- 11. Шарик массой m=88 г, находящийся на вращающемся гладком горизонтальном диске, соединён лёгкой пружиной с вертикальной осью вращения, проходящей через центр диска (см. рис.). Шарик обращается вокруг этой оси с угловой скоростью $\omega=5,0$ рад/с. Если удлинение пружины $\Delta l=2,0$ см, а расстояние от оси вращения до центра шарика l=20 см, то жёсткость пружины равна ... Н/м.
- 12. Деревянный ($\rho_{\rm д}=0.8~{\rm г/cm^3}$) шар лежит на дне сосуда, наполовину погрузившись в воду ($\rho_{\rm B}=1~{\rm г/cm^3}$). Если модуль силы взаимодействия шара со дном сосуда $F=9~{\rm H}$, то объём V шара равен ... дм³.
- 13. Тело массой m=300 г, подвешенное на легком резиновом шнуре, равномерно вращается по окружности в горизонтальной плоскости. Шнур во время движения груза образует угол $\alpha=60^\circ$ с вертикалью. Если потенциальная энергия упругой деформации шнура $E_\Pi=90,0\,$ мДж, то жесткость k шнура равна ... Н/м.
- **14.** Два тела массами $m_1=2,00$ кг и $m_2=1,50$ кг, модули скоростей которых одинаковые ($\upsilon_1=\upsilon_2$), движутся по гладкой горизонтальной поверхности во взаимно перпендикулярных направлениях. Если после столкновения тела движутся как единое целое со скоростью, модуль которой $\upsilon=10$ м/с, то количество теплоты Q, выделившееся при столкновении, равно ... Дж.
- **15.** В баллоне находится смесь газов: аргон ($M_1=40~\frac{\Gamma}{\text{моль}}$) и кислород ($M_2=32~\frac{\Gamma}{\text{моль}}$). Если парциальное давление аргона в три раза больше парциального давления кислорода, то молярная масса M смеси равна ... $\frac{\Gamma}{\text{моль}}$.
- **16.** Небольшой пузырёк воздуха медленно поднимается вверх со дна водоёма. На глубине h_1 = 80 м температура воды ($\rho=1,0\frac{\Gamma}{\text{см}^3}$) $t_1=7,0^{\circ}\text{C}$, а объём пузырька $V_1=0,59~\text{см}^3$. Если атмосферное давление $p_0=1,0\cdot 10^5~\Pi \text{a}$, то на глубине $h_2=1,0~\text{m}$, где температура воды $t_2=17^{\circ}\text{C}$, на пузырёк действует выталкивающая сила, модуль F которой равен ... мН.
- 17. При изотермическом расширении идеальный одноатомный газ, количество вещества которого постоянно, получил количество теплоты Q_1 , а сила давления газа совершила работу $A_1 = 0.9$ кДж. Если при последующем изобарном нагревании газа его внутренняя энергия увеличилась на $\Delta U_2 = 2Q_1$, то количество теплоты Q_2 , полученное газом в изобарном процессе, равно ... кДж.

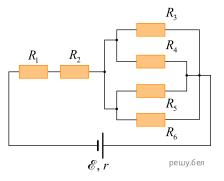
18. На точечный заряд q, находящийся в электростатическом поле, созданном зарядами q_1 и q_2 , действует сила \vec{F} (см.рис.). Если заряд $q_1=5,1$ нКл, то заряд q_2 равен ...нКл.



- **19.** Зависимость силы тока I в нихромовом $\left(c=460\frac{\mathcal{J}_{\mathcal{K}\Gamma}}{\mathrm{K}\Gamma\cdot\mathrm{K}}\right)$ проводнике, масса которого m=30 г и сопротивление R=1,3 Ом, от времени t имеет вид $I=B\sqrt{Dt}$, где B=0,12 А, D=2,2 с $^{-1}$. Если потери энергии в окружающую среду отсутствуют, то через промежуток времени $\Delta t=90$ с после замыкания цепи изменение абсолютной температуры ΔT проводника равно ... К.
- **20.** Тонкое проволочное кольцо радиусом r = 4.0 см и массой m = 98.6 мг, изготовленное из проводника сопротивлением R = 0.40 Ом, находится в неоднородном магнитном поле, проекция индукции которого на ось Ox имеет вид $B_x = kx$, где k = 4.0 Тл/м, x координата. В направлении оси Ox кольцу ударом сообщили скорость, модуль которой $v_0 = 4.0$ м/с. Если плоскость кольца во время движения была перпендикулярна оси Ox, то до остановки кольцо прошло расстояние s, равное ... см.
- **21.** Квадратная рамка изготовлена из тонкой однородной проволоки. Сопротивление рамки, измеренное между точками A и B (см. рис.), $R_{AB}=1,0$ Ом. Если рамку поместить в магнитное поле, то при равномерном изменении магнитного потока от $\Phi_1=39$ мВб до $\Phi_2=15$ мВб через поверхность, ограниченную рамкой, за время $\Delta t=100$ мс сила тока I в рамке будет равна ... мА.

22. Две вертикальные однородно заряженные непроводящие пластины расположены в вакууме на расстоянии d=70 мм друг от друга. Между пластинами на длинной лёгкой нерастяжимой нити подвешен небольшой заряженный ($|q_0|$ =200 пКл) шарик массой m=630 мг, который движется, поочерёдно ударяясь о пластины. При ударе о каждую из пластин шарик теряет $\eta=36,0$ % своей кинетической энергии. В момент каждого удара шарик перезаряжают, и знак его заряда изменяется на противоположный. Если модуль напряжённости однородного электростатического поля между пластинами E=400 кВ/м, то период T ударов шарика об одну из пластин равен ... мс.

23. Стрелка AB высотой H=3.0 см и её изображение A_1B_1 высотой h=2.0 см,формируемое тонкой линзой, перпендикулярны главной оптической оси N_1N_2 линзы (см. рис.). Если расстояние между стрелкой и её изображением $AA_1=7.0$ см, то модуль фокусного расстояния |F| линзы равен ... см.

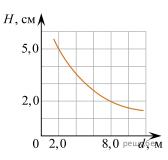

- **24.** Для исследования лимфотока пациенту ввели препарат, содержащий $N_0=120~000$ ядер радиоактивного изотопа золота $^{133}_{54}$ Xe. Если период полураспада этого изотопа $T_{\frac{1}{2}}=5,5~{\rm cyr.}$, то $\Delta N=90000$ ядер $^{133}_{54}$ Xe распадётся за промежуток времени Δt , равный ... cyr.
- **25.** Если за время $\Delta t = 30$ суток показания счётчика электроэнергии в квартире увеличились на $\Delta W = 31,7$ кВт · ч, то средняя мощность P, потребляемая электроприборами в квартире, равна ... Вт.
- **26.** Электрическая цепь состоит из источника тока, внутреннее сопротивление которого r=0,50 Ом, и резистора сопротивлением R=10 Ом. Если сила тока в цепи I=2,0 А, то ЭДС $\mathcal E$ источника тока равна ... В.

27.

На рисунке изображена схема электрической цепи, состоящей из источника тока и шести одинаковых резисторов

$$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = 10.0 \,\text{Om}.$$

В резисторе R_6 выделяется тепловая мощность $P_6=90,0$ Вт. Если внутреннее сопротивление источника тока r=4,00 Ом, то ЭДС $\mathcal E$ источника тока равна ... В.



- **28.** Электрон, модуль скорости которого $\upsilon=1,0\cdot 10^6\ \frac{\mathrm{M}}{\mathrm{c}}$, движется по окружности в однородном магнитном поле. Если на электрон действует сила Лоренца, модуль которой $F_{\mathrm{Л}}=6,4\cdot 10^{-15}\ \mathrm{H}$, то модуль индукции B магнитного поля равен ... мТл.
- **29.** В идеальном колебательном контуре, состоящем из конденсатора и катушки, индуктивность которой L=0.20 мГн, происходят свободные электромагнитные колебания. Если циклическая частота электромагнитных колебаний $\omega=1.0\cdot 10^4 \frac{\mathrm{pag}}{\mathrm{c}}$, то ёмкость C конденсатора равна ... мк Φ .

30.

График зависимости высоты H изображения карандаша, полученного с помощью тонкой рассеивающей линзы, от расстояния d между линзой и карандашом показан на рисунке. Модуль фокусного расстояния |F| рассеивающей линзы равен ... дм.

Примечание. Карандаш расположен перпендикулярно главной оптической оси линзы.

6/6